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SECTION 1

INTRODUCTION

The proper simulation of plasma transport in three

dimensions is a crucial issue in the construction of a

numerical model for the high altitude nuclear environment

(HANE). As a rule, the digital simulation of the system

of spatial equations, which describe the physics, requires

that all fluctuations of the simulated quantities be

resolved. In general, HANE simulations cannot meet this

requirement because the range of relevant scale sizes can

extend to six orders of magnitude. The practical limita-

tions of computer storage and cost will, typically, con-

strain a three dimensional numerical code to a scale size

range of one to one-and-one half orders of magnitude in

each dimension. At this sampling rate, only the larger

structures can be resolved. Historically, HANE plasma

simulation algorithms, as employed in codes such as MELT,

spatially resolve the large scales, but are forced to ignore

a vast range of small scales. It is, of course, generally

acknowledged that the small scales are important to satellite

and IR systems effects modelling, but their interaction with

the large scale flow has been generally neglected in codes

such as MELT. The importance of small scale structure

effects has motivated the development of a theory of micro-
structure generation and transport.

In recent years, a theory of microstructure generation

and transport, based on the gradient drift mechanism, has

been developed which is capable of addressing the scale size

range problem in computer simulation. The numerical

algorithms which derive from this microstructure theory have



been incorporated into the nuclear effects simulation

SCENARIO code. In terms of general code architecture,

SCENARIO may be viewed as an engineering version of MELT.

The principal purpose of the code is to provide three-

dimensional plasma environments for subsequent systems

analysis of satellite communications effects. In the

present context, the code is serving as a research vehicle

for developing and applying the microstructure theory.

This paper focuses upon the crossfield transport imple-

mented in the code which represents the recent advances

in the theory.

Microstructure theory can be regarded as the applica-

tion of stochastic techniques to spatial simulation

problems. The application of stochastic theory to the

HANE plasma problem originated with research by Workman

and Chu in 1975. Utilizing the principle of conservation

of plasma power (the square of electron density), the early

work tied the physical space numerical concepts into the

Fourier space data base (as expressed in a power spectral

density curve). The first theoretical and numerical model

concentrated on the evolution of plasma scale size in

Fourier space (Workman and Chu, 1978). This paper has

stimulated other interesting research into the Fourier

space evolution of plasma power, notably the outstanding

experimental work by Pongratz and Fitzgerald (1981).

The early microstructure work was followed by the

development of transport algorithms for the evolution of

both mean plasma density and density variance. This

modelling accounted for the effect of microstructure

generation on gross plasma structures and flow (Workman,

Chu, and Ferrante, 1979). The important concept of the

flow of plasma power from macrostructure scales to

m i ra mmmmiml ii i8



microstructure scales in a conserved manner was extensively

developed in this work. The introduction of the "Haerendel

velocity" approximation as a suitable vehicle for furthering

the theoretical development was made by Workman in connection

with the work.

A significant advance in the analytic development of

microstructure theory towards a more formal and rigorous

stochastic approach was undertaken by Stagat in 1979. The
"smooth current" approximation in his work provided both a

more complete statement of the Haerendel velocity model

and, more important, laid the groundwork for a self consistent

and elegant mathematical formulation of the general problem.
Further developments (as reported in Stagat, et al., 1982)

have formed the starting point for all subsequent work.

This paper is directed at recent developments in

microstructure theory, but is organized, in its derivation

of results from basic principles, to be a self contained

document. That is, while the reader is encouraged to study

the earlier work for the physical insight that has led to

current theory, the objective here is to present a complete

development of the work as it now stands.

The application of stochastic theory to the equations

for the evolution of 2-dimensional plasmas, as discussed in

Section 2, leads to further understanding of the implications

of the "Haerendel velocity" and the "smooth current" or
"smooth J" assumptions in terms of the correlation properties

assumed between the stochastic quantities of the problem

and in terms of the modifications to the effective conduc-

tivity that are assumed to be caused by microstructure.

Two-dimensional algorithms are developed based on this

theory and are applied to the 2-dimensional evolution both

of a barium ion cloud and a nuclear plasma under the

influence of radial heave winds.

9



In Section 3 the rigorous approach used to develop

the 2-dimensional algorithms in Section 2 are extended to

the problem of 3-dimensional transverse transport. The

transverse transport aspects of 3-dimensional late-time

HANE plasmas are very similar to the transport and evolu-

tion of 2-dimensional plasmas. Assumptions about the

structure correlation properties in the parallel-to-the-

field direction are needed in the 3-dimensional KANE

problem to remove this dimension from the problem, but

once this removal has been accomplished the two problems

are nearly identical. Different transport algorithms

arise from different assumptions and several possible

assumptions are considered in Section 3. Algorithms

based on one promising set of assumptions have been

developed and implemented in a version of SCENARIO.

Results from a trial run are presented.

Section 4 presents conclusions as well as other

issues into which further extension of the theory is

possible.

10
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SECTION 2

MICROSTRUCTURE THEORY APPLIED TO 2-DIMENSIONAL
PLASMA EVOLUTION

2-1 CLASSICAL SPLIT STEP ALGORITHM FOR 2-DIMENSIONAL

PLASMA EVOLUTION

Classical modelling of 2-dimensional plasma evolution

is performed using sprit-step algorithms that are characterized

by the computational flow schematized in Figure 2-1. Two key

steps seen in the figure are the potential solving step and

the convection step. Given a specification for the spatially

varying conductivity, the potential step finds the current

flow and electric field patterns produced by plasma driving

forces. The plasma motion is described by electron Hall

drift (E x B motion) and thus electric field determination

is equivalent to plasma velocity determination. Given the

results of the potential equation solution, the plasma flow

is known and can be used to advance plasma density parameters

through an increment in time in the convection step. The

changes in plasma density cause corresponding changes in the

plasma conductivity which are provided to the potential solver

through the conductivity relation for the start of the next

split-step cycle.

For the classical case the conductivity relation is a
simple proportionality and is, thus, not often singled out in

classical split-step descriptions as it is in Figure 2-1.

Portraying it as an explicit step in this instance provides

an early insight into the importance this relation has in

microstructure algorithms. Microstructure algorithms for

plasma evolution can be regarded as an extension of the

split-step scheme shown in Figure 2-1, as will be discussed

.- ...
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Figure 2-1. Classical 2-d split step algorithm
for plasma evolution.
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later. It is appropriate to discuss in this section the

background of the relations behind the steps portrayed.

A key physical parameter in plasma evolution behavior

is the plasma current density, J. Plasma currents are

driven by imbalances between the forces acting on the

electron fluid and the forces acting on the ion fluid.

Currents are driven not only by the conventional electro-

magnetic field forces but also by neutr&l wind, pressure,

gravity, and centrifugal acceleration forces. For the late

time HANE plasma situation the electromagnetic field forces

and the neutral wind forces frequently dominate plasma

behavior. For the sake of simplicity this report will

concentrate on these two forces. The results obtained, it

should be noted, are easily generalizable to a more complete

list of HANE forces.

The ionospheric current response to a combination of

electric and neutral wind forces is approximated in this

report with the relation

" eN( /E
J = + V x i (2.1)

where e is the electronic charge, N is the plasma density,

p is the ionic mobility through the neutral air background,

V is the neutral wind, E is the electric field and B is

the magnetic field intensity and where the magnetic field is

assumed to be constant and directed in the z-direction. For

* the two-dimensional evolution problem the quantities N, E

and V are assumed to vary only in the x- and y-directions.

The quantity i represents the unit normal vector in theI z
z-direction. Note that eN/pB can be identified as the

plasma conductivity.

13
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The above current response is found from an evaluation

of the difference between ion and electron fluxes in response

to electromagnetic field and wind forces. The electron

velocity is assumed to be essentially independent of the wind

forces. The electron mobility in the background air is also

assumed to be very high implying

Ue = E x iz/B (2.2)

where Ue is the electron velocity.

The ion velocity is evaluated from the momentum or

force balance equation. A force balance equation between the
ion drag in a neutral gas and an imposed electric field

produces the simple proportionality relation

Ui = E (2.3)

where U. is the ion velocity and where again is the1
ionic mobility in the gas. If the neutral gas is not at rest

but is moving with velocity V then the drag relation

becomes

U. - V - PE (2-4)

Heuristically it is not expected that ions could differentiate

between electromagnetic forces that are purely electrostatic

and forces that include magnetic fields. This argument

justifies use of the above expression for the more general

case of having a magnetic field present with the electric

field E in (2.4) substituted with E + Ui  B giving

U- V - u(E + Ui x B) (2.5)

14
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Algebraic manipulation of this equation to isolate U.1
produces the well known result

. (B) 2 E i+ B E

1 + (pB) 1 + (PB)

(2.6)

+ PB Vx i + 1 V
1 + (1B) 1+ (pB)

The ion velocity for large pB is 'essentially E x B/B2

and thus very close to the electron velocity. The small

differences between the ion velocity and the electron velocity

are the source of plasma currents. The difference between ion

and electron velocity can be seen to be

U.-U1 E + IB E

e + () x iz  1 + (pB) 2 B

(2.7)

+ B V x iz + 1 V
1 + (B) 2  Z 1 + (B) 2 2A

which for large pB produces the approximate current relation

presented earlier in the discussion.

As mentioned previously plasma motion is taken as

synonymous to electron motion which is affected only by the

electric field. The mechanism by which wind forces move a

plasma irregularity must thus be through the electric fields

it generates as there are no explicit wind terms in the

electron velocity. The mechanism by which the wind generates

electric fields is through the current that it drives. Where

the wind current encounters gradients in density its flow is

modified so that it is no longer divergenceless. Charge

density source regions and sink regions are created which

build up charge. This build up continues over the period of

15

nAMEN -.



typically milliseconds until the associated electric fields

build up to a point where electrically driven currents bleed

off the charge sources and sinks. The balance between the wind

current produced charge sources and sinks and the electric

field driven current is specified by the relation

V • C E/B = - V • CV x iz  (2.8)

where C, the conductivity, is given by eN/uB. Thus the

plasma flow in response to applied wind forces is established

through the creation of a polarization field which can be

found through the above equation. The additional assumption

that V x E = -aB/Bt = 0 is made for late time electrostatic

flow which facilitates solution for E in terms of a

potential function, 0. The resulting relations are

E/B = -
(2.9)

V * CVO = V • C V x i

where C and V are known functions of x and y and

where 0 is to be found. The potential 0 is found through

these relations in the potential step algorithm.

The convection step algorithm uses the plasma

continuity equation with the known plasma flow to update

the plasma density. The continuity relation is given by

F NU - 0 
(2.10)

where U is the plasma flow velocity given by E x i /B.z
The continuity equation is basically a restatement of the

conservation of electrons. The only source of local density

changes is assumed to be variations of the fluxes into and

16
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out of a region. The continuity expression can also be

written in terms of the current density J

aN+ V. IiBx i + N / (2.11)
T - - iz

This form of the continuity expression is sometimes more

useful for microstructure transport considerations.

The background relations for a complete cycle of the

split step algorithm have thus been presented. The relation

between the local density and the plasma conductivity is

obtained from the current relationship with applied electric

field and wind forces. The plasma motion determined by

the potential step is found by balancing the plasma charge

buildup and depletion caused by wind current divergences

with electric current flows produced by electric fields.

The flow quantities calculated are then used with the conserva-

tion principle to update plasma densities. The next section

discusses how these steps are modified to account for the

presence of microstructure.

2-2 APPLICATION OF STOCHASTIC THEORY TO THE TWO-DIMENSIONAL
SPLIT-STEP ALGORITHM

In the previous section a description of the classical

split-step approach to the simulation of plasma evolution is

presented. In this section the basic refinements provided

by the application of microstructure theory to the plasma

transport algorithms are discussed.

The application of microstructure theory to the plasma

evolution problem is motivated by one primary concern, namely

fine scale plasma structure. Fine scale plasma structure

with sizes down to the order of 100 meters is produced over

17



"-I

spatial extents of hundreds of kilometers by high altitude

nuclear explosions. Its location intensity and spatial

characteristics are important for the prediction of satellite

communications effects. Because of the complex and seemingly

chaotic nature of the HANE structure, stochastic descriptions

of it are used to predict satellite communications effects.

Only a few statistics of the fine scale structure are

required to provide reliable estimates of satcom system per-

formance and these statistics are believed to be nearly con-

stant over many kilometer regions.

It is virtually impossible to grid HANE numerical

computations fine enough to resolve the fine-scale structure

details because of storage limitations. Classical techniques

merely grid as fine as costs and storage limitations permit

and ignore the presence of plasma density and velocity

fluctuations varying faster than the spatial Nyquist rate.

These approaches do not specify where the very important fine

scale density fluctuations exist and they ignore any possible

effects of the fine scale structure on transport. Micro-

structure theory was developed to address these deficiencies

in the classical techniques.

Microstructure theory treats the plasma evolution

equations on a stochastic basis. Numerical algorithms are

used with sampling grids that have roughly the same resolution

as the classical problem and that cannot resolve the fine

scale structure on a deterministic basis. Rather than ignore

the presence of the fine scale fluctuations, the microstructure

approach treats structure unresolved by the sampling grid on

a stochastic basis and describes its characteristics through

its statistics. (Structure unresolved by the sampling grid

when approached on a stochastic basis is what is meant by the

18
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term 'microstructure.') By adopting a stochastic approach

to the problem, transport algorithms for structure location

and intensity can be developed for satcom effects predictions;

the influence of fine scale structure upon bulk plasma motion

can be investigated; and an understanding of the implicit

assumptions behind the classical approach can be developed.

Microstructure theory provides refinements to the

classical plasma evolution algorithms which are evident in

a comparison of Figure 2-1 with Figure 2-2, the latter of

which illustrates the microstructure split-step algorithms.

The potential solving steps of both algorithms are the same.

Both produce plasma flow parameters for the convection step

from the specified spatial dependence of conductivity. The

fundamental difference between the two algorithms is that the

conductivity specified for the microstructure algorithm is a

function of multiple statistical parameters instead of the

one parameter of plasma density used in the classical algorithm.

Further, in order to supply the spatial dependence of these

multiple parameters it is necessary for the microstructure

convection algorithm to convect multiple statistical quantities.

The refinements to the classical algorithm provided by

the microstructure approach are based upon the premises that
fine scale structure changes the conductivity from the value

determined by the mean plasma density in a cell and that by

specifying statistical quantities in addition to the mean a

better approximation to the actual conductivity may be obtained.

Specifying one or two additional quantities requires a loss in

the linear scale resolution which is small in comparison to

the gain in the accuracy of bulk plasma convection and which is

virtually inconsequental in view of the distinct advantage of

being able to predict structure location and intensity.

19
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Figure 2-2. Microstructure 2-d split step algorithm
for plasma evolution.
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In the microstructure approach the basic quantities

of plasma density, plasma velocity, electrostatic potential

and plasma current are treated as stochastic processes which

are interrelated and advanced through time with the classical

differential equations understood in a stochastic sense.

The driving force of the neutral wind is taken to be

deterministic. The stochastic quantities are assumed to have

homogeneous statistics over each cell. The statistics are

treated as inhomogeneous over the simulation dimension and

it is the spatial dependence of the statistics that the

approach tries to predict.

In the potential equation and in the convection equations

for the statistics the stochastic quantities are strongly

coupled together. As a result the nature of the correlation

between them is important for characterizing tieir evolution.

Currently the correlation properties between plama quantities

are not predicted quantities. They are determined instead

through basic assumption (justified perhaps through physical

intuition and to some extent by numerical investigation).

It is perhaps surprising that the classical algorithm,

which simply ignores the presence of fine-scale fluctuations,

can be justified from a microstructure perspective by making

the simple assumption that the electric field and the density

fluctuations are uncorrelated. This assumption allows the

conductivity relation for the mean current <J> to be

derived straightforwardly by taking the expectation (denoted

by angle irons < >) of both sides of the current relation

(Eq. 2.1) presented in Section 2.1:

<J> <NER + <N> Vx i
Iij B ~IB z

(2.12)
e<N> <E>e - E- + V x i

UB B Z)

21
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The latter form of this equation has incorporated the assumed

uncorrelated nature of the fluctuations of the density N and

the electric field E.

The mean plasma density <N> is seen to play the same

role as the density N does in the classical conductivity

relation. The convection relation for the mean plasma density

<N> can also be found to be the same as that for the classical

density by taking the expectation of the continuity equation

N > <V N E> x iz/B

(2.13)
= V • <N> <E> x i /B

z

Thus, microstructure theory can justify the classical con-

vection algorithms under the assumption that the density and

the electric field are uncorrelated and by making a corre-

spondence between the classically specified density and the

mean density.

It may be of further interest to note that microstructure

theory techniques can be applied to predict the convection of

the variance of the plasma fluctuations using a similar

assumption. If both N and N2 are assumed to be

uncorrelated with the electric field then it is found that

<N2 > is convected with the same velocity as <N> and

consequently the plasma variance E 2 moves with the same

velocity as <N>. To illustrate the convection velocity of
2<N > note

N2  3N-= 2N - = -2N E x i VN/B
at at

2= -V • N E x i /B
z

and, thus,

22



2 2>2<DN2 D<N2>N
=> N> - -<V N E x i /B>

(2.14)

= -V • <N 2> <E> x i7/B

where the last expression incorporates the assumed uncorrelated

nature between N2  and E. The convection velocity of <N 2>

is thus <E> x i z/B which is the same as the convection

velocity of <N>.

Thus microstructure theory can be applied to the plasma

evolution problem with assumptions that result in not only

the convection of density in a classical-like manner but

also the convection of structure. The structure convection

under these assumptions is somewhat trivial in that it moves

with the same velocity as the mean plasma density but the

exercise is worthwhile for understanding the relationships

between classical and other microstructure convection

techniques.

Alternative assumptions about the correlation between

stochastic quantities lead to alternative conductivity

relations. Early in the development of the microstructure

approach for SCENARIO, Workman utilized the "Haerendel

velocity" assumption for plasma transport. Stagat developed

identical two-dimensional transport relations utilizing the
"smooth current density" approximation. Couched in terms

of microstructure theory these transport relations are the

immediate consequence of assuming that the inverse of plasma

density is uncorrelated with the current density. The

conductivity relation is thus found by

J e (E V xN B vxizI

and

< = <J><1/N> = > [- + V x i

giving US I

<J> = <1/N> (2.15)
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For the SCENARIO algorithms the statistic 11<1/N> replaces

the mean plasma density <N> used in the classical conduc-
tivity algorithm. In general this statistic can be shown
to be less than or equal to the mean density with larger

differences reflecting the presence of more intense structure.
Note that this conductivity relation thereby reflects an
implicit assumption that microstructure modifies conductivity.
This conductivity relation and others similar to it will be
discussed in further detail in the next section.

The convection algorithms for the mean density is
straightforwardly obtained by taking the mean of the
continuity equation in its current density form as presented
in the previous section, namely Eq. (2.11), i.e.,

at (e J x i z N
yielding in the mean

-= -V ( <J> x i + <N> (2.16)

This expression for the convection of mean density is applic-
able regardless of the correlation assumption because of the
absence of product terms of stochastic quantities in the
stochastic continuity equation as given in the above form.

Differences in the mean density transport and evolution can

thus be attributed directly to differences in the mean
current density pattern. Current density patterns, of course,
reflect differences in conductivity dependences produced by
different correlation assumptions.

An effective plasma transport velocity can be defined
such that the convection equation for the mean density can
be written as follows:
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a<N> -V<N> U
at Ueff

where

-f ,B <J> x i + V (2.17)eff e<N> z

For the SCENARIO approach the effective velocity can be

written in terms of the electric field as

Ueff , Uave + Fc 1 (2.19)

where U ave is the average plasma velocity defined by

Uav e = <E> x iz/B = -<VO> x i ; (2.19)

where W is the average ion-neutral slip velocity defined

by

W = V - U (2.20)

and where F is a normalized structure intensity parameterC

varying from zero in structureless regions to near one in

highly structured regions defined by

Fc = N 1 (2.21)c <N> < I1N>

The continuity equation when written in this format shows

the effective transport velocity for the mean plasma to be

between the average plasma velocity as determined from the

potential equation and the neutral wind velocity. The

equation indicates that the more highly structured regions

tend to move more with the neutral wind than with the average

plasma velocity. This observation has been made in past

works by Workman and Staqat. When comparison is made to

classical transport velocities it should be kept in mind

that this tendency is partially offset by the fact that the

highly structured regions will be regions of lower conductivity
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and U ave will consequently be less coupled to the neutral

wind. When investigating the differences in mean plasma

transport for alternative conductivity models it may thus be

advisable to use the current density form of the continuity

equation and to compare current densities.

The motion and growth of structure in the SCENARIO

approach can be described through the equation for the

plasma variance r2. This equation is derived from

equations describing the convection of <N2 > and <N> as

follows:

LI_ 2 2(<N - N>2

at at

a<N 2 > - <N>= 2< N> -_5-_t

2
S-V <N U> + 2<N> V • <N U> (2.22)

2
The mean flux of N can be found by multiplying the flux

expression for N in terms of the current by N and by then

taking the mean. The flux expression for N and the subse-

quent operations to find <N 2U>  are:

N U =i B J x i + N V
e z

2 2 V
N U=ANJ i Nve z

<N2 U> = B <NJ> x i + <N2 > Ve z

= PA <N><J> x i + <N2 > V (2.23)
e z

In the latter expression another correlation assumption is

made in the SCENARIO approach that the plasma density is also

uncorrelated with the current density. For Z2 the

resulting expression is
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2 B(
-V( <N> <J> x iz + <N>V

ate + < >V (2.24)

+ 2<N> V • <J> xi + <N> (2

An expression for the convection of Z2 in terms of only

z2 and <N> is desirable for use in numerical algorithms.

With some algebraic manipulation the terms involving <N2 >

can be removed from the above equation yielding

a12 = 2 V - <N>2 Ueff ) - Uff • V <N> 2

at vf (z (2.25)

where Ueff is again the effect transport velocity of the

mean plasma density as defined above in equation (2.18).

In the above format, the equation is physically

enlightening. The equation describes the variance as a

compressible fluid with an effective motion given by
<N>2

V Z2 eff

and with a source term given by )
U •f * <N> 2
Uff

The source term demonstrates a behavior that is related to

the gradient drift growth of structure.

Unlike the convection equations for <N> and <N2>

equation (2.25) cannot be put into a form where the entire

right-hand side is a divergence operation on a flux.

This feature of the equation reflects the physical behavior

of gradient drift growth of structure. The total E2  in

a numerical simulation need not remain constant because of

this growth term. Howeve; it should be noted that numerical

algorithms which convect Z2 with the above equation and
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<N> with its convection relation do come close to conserving

the total <N2 > within the simulation. This fact is

important when considering which systems of statistics should

be used for microstructure algorithms, e.g., choice of the

system of <N> and Z2 versus the system of <N> and <N2 >.

Further numerical considerations are discussed in Section 2-4.

Thus it has been demonstrated that the plasma evolution

equations can be considered on a stochastic basis in order

to accommodate the presence of fine-scale structure.

Algorithms can be derived which predict the location of

microstructure and its influence upon plasma evolution.

These algorithms are dependent upon the assumptions made

about which quantities are uncorrelated. The classical

plasma evolution algorithms set forth in the previous section

can be justified from a stochastic standpoint if the electric

field fluctuations, and hence the velocity field fluctuations,

are assumed uncorrelated with the plasma density fluctuations.

It is observed earlier in this section that the classical

approach can be extended to predict the location of structure.

Using the extended classical approach structure is found to

be frozen in. For SCENARIO an alternative set of stochastic

variables are assumed to be uncorrelated, specifically, the

density and its inverse both are assumed to be uncorrelated

with the current density fluctuations. Using the SCENARIO

approach plasma structure is found to move with a slightly

different velocity than the mean density and to grow with

movements through density gradients. Justification for the

SCENARIO approach comes from conductivity measurements of

structured regions, a topic that is discussed further in

the next section.
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2-3 MICROSTRUCTURE CONDUCTIVITY AND CLOSURE RELATIONS

As seen in the previous section the essential difference

between classical techniques and SCENARIO microstructure

techniques is contained within the conductivity relation

between the mean current and the electric field. This

difference can be seen by comparing equations (2.12)

(classical) and equation (2.15) (SCENARIO). The refinements

provided by the microstructure approach are based upon the

premise that fine scale structure alters the conductivity

from the value determined from the mean plasma density in a

cell and that by specifying additional statistics of the

plasma fluctuations the conductivity estimate can be improved.

This section investigates the relations which prescribe the

conductivity in terms of plasma density statistics and their

motivation.

The stochastic potential equation (the stochastic version

of equation (2.9)) is a relation between the deterministic

neutral wind, V, and the stochastic quantities of plasma

density N and electric field potential, 0:

V • (NV- ) = * (N V x iZ ) (2.26)

The quantities N, 0 and V are functions of spatial

coordinates x and y. The quantities N and 0 are also

inhomogeneous and the potential solving step finds their

spatially varying statistics for the given neutral wind flow.

The numerical approach to the potential solving step is to

spatially grid the problem to a resolution such that the

spatial variation of the statistical descriptors are well

resolved in the sampling §rid. To a good approximation the

stochastic fluctuations can be treated as homogeneous within

a sampling cell. By ascribing an effective conductivity to

each cell, as determined from solutions of the potential
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equation with homogeneous processes, the spatially varying

nature of the problem can be treated using classical techniques.

The stochastic potential problem of interest thereby becomes

the determination of the effective conductivity of a region
with homogeneous statistics. (The correlation properties

of the current with certain functions of the plasma density

are also of interest for higher order moment convection but

little work has been done in this area.)

In many respects the homogeneous stochastic potential

problem for structured plasmas is related to a problem that

should be found in other areas of physics and engineering,

namely, the problem of finding the conductivity of a
homogeneous aggregate of materials with each material having
a different conductivity. The problem of finding the

electrical conductivity of a slab of earth in which copper-

rich pebbles are found is an example of a similar problem

and there are potentially many other problems that would be

of interest in-related fields. Yet, to the author's

knowledge the problem has not been extensively studied

which may be somewhat surprising since the problem can

also be thought of as the static equivalent to the problem

of propagation through inhomogeneities.

Solutions to the stochastic potential equation are
difficult to obtain even for the case of homogeneous statistics.

There are two special situations in which solutions are
available And both involve structure stratification. These

cases are random density profiles stratified with gradients

parallel to the wind, Figure 2-3, and stratified with

gradients perpendicular to the wind, Figure 2-4. Because of

the somewhat limited nature of the configurations which have

analytical solutions the application of numerical techniques
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has proven useful for extending understanding of stochastic

potential equation solutions.
Consider the first situation in which an analytical

solution exists as illustrated in Figure 2-3. This situation

could easily arise in the simulation of smooth barium ion

clouds that have steepened to a point where the actual

density gradients are unresolvable by the sampling grid and

thus must be treated as microstructure. With the wind

applied so that currents are driven along the contours of

constant density, there are no electric field fluctuations

produced. The electric field is constant and independent

of the density fluctuations. The average current in the

cell is consequently given by

<J> Ae <N> (<E>/B + V x i) (2.26)jiB (22z

and the conductivity is thus proportional to the mean electron
density. This situation corresponds to classical conductivity

relations.

The other situation with analytical solution has random

density fluctuations with gradients perpendicular to the wind

as shown in Figure 2-4 and is similar to the situation in late-

time barium clouds in which long sheets have developed parallel

to the wind. In this situation the density is constant in the

direction of the wind and consequently the wind driven current

in the perpendicular direction is also constant in the wind
direction. Since the wind current is divergence free it can

be concluded that the current is constant. Since the current
is constant it is uncorrelated with the fluctuations in the

density. As shown in Section 2-2 this fact leads to a con-

ductivity that is proportional to l/<1/N>. This form of

the conductivity is basically the form used in SCENARIO with

some further approximation.
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Since analytical solutions to the homogeneous stochastic

potential equation are so limited numerical calculational

results have been used to investigate the applicability of

the various conductivity expressions. Calculational results

provide the mean potential drop plus wind driver across a

cell and the current density at the cell bonndary. The ratio

of these two is the mean conductivity.

Shown in Figure 2-5 is one geometry that has been

numerically investigated. The figure shows the upper half

of a symmetric problem of five sheet-like structures. The

geometry is similar to the stratified case investigated

analytically but to investigate the effect of the striation

tips upon the problem the sheets are terminated within

the calculational boundary. From the potential equation

solution for this problem it is possible to evaluate the

conductivity ratio on a column by column basis and to

compare the results with the columnar statistics such as

<N> and i/<l/N>--although it should be remembered that

it is the average of these columnar ratios that should be

used for the effective cell conductivity. A comparison

of the numerically derived conductivity ratio and the

columnar statistics is shown in Figure 2-6. The figure
3 2

shows the statistical ratio <N> /<N2 >  in addition to the

quantities <N> and 1/<1/N>. It can be seen that on a

columnar basis the statistic 1/<1/N> provides a generally

closer estimate to the calculated conductivity than the

statistic of <N>. In addition the statistic <N> 3 <N2>

also gives a respectable approximation to the numerical

result. The average of all the columnar results is given

in Table 2-1. The tabulated results show the expected
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Figure 2-6. Mean columnar conductivity (3) versus

position. Also shown are the columnar
mean density (0), the inverse of the
columnar mean inverse density (1), and
the asymtotic closure approximation to
(1) used in 3-dimensional SCENARIO
routines (2).
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Table 2-1. Comparison of Numerical Conductivity
Calculational. Results with Statistical
Estimators

FINGERS RODS GAUSSIAN

CLASSICAL <N> 1.000 1.000 1.000

SCENARIO <1/N> -1.647 .682 .964

ASYMPTOTIC

CLOSURE <N> /<N > .640 .634 .966

NUMERICAL RESULT C .632 .726 .982
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result that the 1/<1/N> SCENARIO conductivity provides a

better estimate to the actual conductivity than the classical

<N> value. Note that the current pattern the magnitude of

which is shown in Fig. 2-7 is not smooth everywhere in the

cell because of the presence of the striation tips. Neverthe-

less, it appears that it is not crucial that the current be

constant for the conductivity result to apply.

In the above numerical example the structure is highly

stratified in the direction that favors the SCENARIO conduc-

tivity form. To remove the effects of structure elongation

from the conductivity comparison the conductivity for a

random distribution of nearby cylindrical rods as shown in

Figure 2-8 was calculated. The results tabulated in Table

2-1 indicate the expected result that the conductivity does

not agree quite as well as the previous case with the

1/<1/N> SCENARIO value. It is surprising perhaps that

they are still much closer to the SCENARIO value than the

classical value. Thus use of the SCENARIO conductivity

approximation seems to be justified for structured regions

in general so long as the density flucturations are not

strongly stratified with gradients parallel to the wind.

The numerical conductivity examples shown in Figures

2-5 and 2-7 can be closely described as two dimensional

shot noise processes (Papoulis, 1965, p. 288) in that they

consist of a random placement of similar shapes. Numerical

conductivity calculations have also been performed for one

likely alternative type of stochastic ptocess, namely, the

two-dimensional Gaussian process.

One member of a two-dimensional Gaussian process

ensemble with isotropic power law power spectral density

is shown in Figure 2-9. The power law dependence used to

generate the figure is proportional to (k 2 + k2 + A)-3/2
x y
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where k and k are the wavenumbers in the horizontalx y
and vertical directions and where A is a constant related

to the outer scale. This power law dependence produces the

k - 1-d in situ fluctuation spectrum expected from many

structuring processes.

The isotropic process may be appropriate for weakly

structured regions of plasma. As structure grows through

the gradient drift instability the non-isotropic two-

dimensional shot noise process probably becomes a better

descriptor because of the manner in which structure tends

to form elongated finger-like regions.

The process shown in Figure 2-9 is weakly structured

and has a r.m.s. density to mean density ratio of only 19%.

The results of the potential caclulation for this case are

shown in Figure 2-10. Periodic boundary conditions have

been used. The conductivity resulting from the calculation

has been compared with other statistical descriptors for

the conductivity in Table 2-1. The results show that the

numerically calculated conductivity is basically a compromise

between the classical and SCENARIO conductivities. Note

that the asymptotic closure conductivity is found to be

very close to the SCENARIO conductivity. The results, thus,

show that the SCENARIO and asymptotic closure conductivity

approximations are no worse (and only marginally better) than

the classical conductivity for the case of weak isotropic

Gaussian structure.

In all three numerical conductivity evaluations the

statistic <N>3/<N2 > is seen to provide an approximation

that is of comparable quality as the <1/N> approximation.

This conductivity relation has been labelled the asymptotic

closure relation and it has been used extensively in the

SCENARIO algorithms to be presented. It is instructive

perhaps to discuss the origin of its name.
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The term closure relation originates in past work

which attempted to explicitly calculate the statistic <1/N>.

This work recognized that the statistic <1/N> can be

convected from initial conditions and flow patterns in the

same manner as <N> is convected. Where the convection of

<N> requires knowledge of <1/N>, the convection <1/N>

requires, analogously, <1/N 2>. The statistic <1/N 2> can

also be convected provided <1/N 3> is known and in general

the statistic <1/NP> can be convected provided that

<I/NP+l> is known, for all p > 0. Numerical treatments

of the problem require a relation which terminates this

infinite regression and this relation was appropriately

called the closure relation. Techniques were also developed

in this early work which did not convect <1/N> specifically

but instead approximated it in terms of other statistics

and the label 'closure relation' was expanded to accommodate

these relations. A closure relation is thus any relation

between known statistics to approximate the unknown

statistic in the problem, including <1/N>.

The statistic <1/N> is directly evaluatable from

the first order statistics of N. Ideally, one could evaluate

all the positive moments of N and then apply the statistical

moment theorem to find the first order probability density

function and the statistic <1/N>. In practice, however,

<1/N> is approximated in one of two ways. First, by assuming

a multi-parameter first order density, such as the "two-level

variable epsilon" densities used in past work and by then

using the known statistics to determine the density parameters;

the first order density and <1/N> can be found. Alterna-

tively, a relation for <1/N> in terms of the known

statistics can be stated specifically with a family of first

order density functions being implicitly assumed. The
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asymptotic closure relation is a closure relation of the

latter type that was formulated such that for both large and

small amounts of structure the result would 'asymptote' to

the value of 1/<1/N>. Its simple form in terms of first

and second moments make the relation attractive for numerical

use.

The asymptotic closure approximation was originally

developed as and may be thought of as -an approximation to

1/<l/N>. However, since the statistic 1/<I/N> is itself

only an approximation to the conductivity it is conceivably

more straightforward to regard the asymptotic closure relation

as an alternative approximation to conductivity. In this

vein it is felt that future work should concentrate more on
developing good approximations to the conductivity rather

than on developing good closure approximations to <1/N>.

2-4 NUMERICAL CONSIDERATIONS

A reasonable question is which of the myriad statistical

parameters should be used as convected quantities in micro-

structure algorithms. In the past work, the choice of

parameters was somewhat ad hoc. Recently, however, methods

for making choices between parameter sets have been developed.

In order to perform a microstructure calculation the

convection of at least two statistical parameters is required.

The number of statistical quantities convected in a calculation

could, in principle, be quite large. It should be kept in

mind, however, that the motivation for using additional

parameters must be to improve conductivity estimates. To

this end it remains to be demonstrated that significant

improvements in conductivity estimates over that provided by

a two-parameter set using the asymptotic closure relation can

be made by using three or four parameter sets. Because of

45

**I?



I

the advantage of reduced storage requirements it is felt that

sets with only two statistical parameters should be used for

convection unless an improvement in conductivity estimates

can be demonstrated with larger sets. Thus one method for

choosing parameter sets is to choose sets with only two members.

It might be thought that the set of the mean density

<N> and the mean square density <N2> is a reasonable

parameter set. Indeed, past work (Stagat, et al., 1982) used

combinations of statistics including these two for their

numerical algorithms. Recent numerical considerations have

revealed that it is desirable to choose statistical parameters

that are, in a sense, orthogonal. It is desired that the

values that the parameters can take should be independent of

each other. For the <N> <N 2> set the parameter values are

not independent of each other because the mean square

<N2> must be greater than the mean squared <N> 2 . The

closely related set comprised of the mean, <N>, and

the variance E2 has been found to be more desirable for

use. The fact that the variance E2 can take values

independent of <N> and the related fact that it is less

susceptible to numerical noise when it is explicitly
2

convected make the <N> Z set preferable to the <N>

<N2 > set.

The nature of the numerical pitfalls associated with

the <N> <N2> set can be illustrated by a classical

calculation of structure convection. A barium cloud problem
has been simulated using the <N> <N2> pair and using

the classical conductivity proportional to <N>. From the

discussion of Section 2-2 it is known that all the quantities
22

<N> <N > and Z should convect with the same velocity.
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However explicit numerical calculations performed in two

different frames of reference bring out important issues.

The problem has been initialized with a Gaussian

spatial distribution of mean density and w.L- microstructure

levels with r.m.s. values of 3% of the mean. The initial

values of <N> and <N2> are shown in Figures 2-11 and 2-12.

With a neutral wind blowing in a horizontal direction toward

the right in the figures, the cloud has been allowed to evolve

300 seconds in both a frame at rest and in a frame moving

at 50 meters per second horizontally toward the right (1/2

the neutral wind velocity). The only source of difference

in the two runs is that all the x-component velocity values

used in the moving frame convection step have been reduced
by 50 meters per second from the values used in the rest

frame calculation. Figures 2-13, 2-14 and 2-15 respectively

show the mean density, mean squre density and the variance

for the rest frame calculation and Figures 2-16, 2-17 and

2-18 respectively show the corresponding results from the

moving frame.

Comparisons of the resulting values of <N> and <N 2>

indicate small (roughly 5%) differences which by themselves

are not unreasonable and are thoroughly acceptable. In

contrast, a comparison of the resulting values of Z 2, as

determined from <N 2> - <N> , shows a striking disagreement

in magnitude and morphology. Further, neither of the results

agree with the theoretically indicated dependence which

specifies that the r.m.s. fluctuation level to mean density

ratio is a constant 3%. Perhaps the most serious error is

that the results from both frames of reference show regions

where Z2 is negative.
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Figure 2-16. Mean density after 300 seconds in
translating frame of reference.

The frame of reference is moving
50 meters per second in the direction
toward the 100 meter per second wind.
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The cause of the erroneous behavior of the calculated

variance can-be attributed to the fact that the 5% fluctua-

tions in <N> and <N2 > become greatly exaggerated because

of the approximate cancellation of the two numbers in the

E2 calculation. For calculations in which structure

dependent conductivity values are used in place of the

classical conductivity the value of Z2 is very important

in the determination of the plasiha flow and further evolution

of Z Convecting <N> and <N2 > explicitly and then

using Z 2 . <N2 > - <N>2 can produce even more unrealistic

results because the large inaccuracies in Z2 resulting

from each time step will feedback into the calculation

through the conductivity values and the associated flow

fields.

The major pitfalls associated with the <N> <N 2>

convection set are avoided if <N> and Z2 are explicitly

convected. For the classical conductivity example above,

use of the <N> Z 2 convection set would produce acceptable

results. The convection of E2 is numerically no )
different from the convection of <N2> and consequently

the variations of the results between the two frames of

reference would have the same 5% level. This variation in

the important Z2 parameter is acceptable and argues
strongly for the use of 'orthogonal' statistics as convection

.4

parameters.

Arguments for the use of <N> and <N as convection

parameters are that both of these quantities are conserved

quantities and 'that by convecting them numerical inaccuracies

can be guarded against by using conservation checks. The

variance parameter is in general not a conserved quantity as

mentioned in Section 2.2. However, mere conservation checks
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do not guarantee accuracy as graphically pointed out by the

above example. Indeed use of the <N> E 2 convection set

has been observed to come much closer to conserving the
quantity of <N2> than an <N> <N2> calculation which adjusts

<N2> so that Z 2 is kept non-negative. Also by not con-
vecting a conserved quantity, conservation can serve as a

numerical quality check. Furthermore, since it is basically

r2 and not <N 2> that is of interest to satcom systems
analysts, assuring the conservation of <N2> is much less

2important than assuring the accuracy of E

2-5 BARIUM CLOUD EXAMPLE

A numerical calculation of the two-dimensional evolution
of an ionospheric barium cloud has been performed using a

microstructure algorithm implemented with the asymptotic

closure conductivity approximation. The problem geometry
and initial values are the same as those used for the

numerical example discussed in Section 2-4. The barium

cloud is represented as an enhancement in the mean density

with a Gaussian spatial dependence. The mean density at

the enhancement peak has a value of 5 and the background

density has a value of 1. The Gaussian spatial dependence

has an e-folding radius of 10 kilometers. Microstructure
is assumed to exist everywhere with an r.m.s. level of 3%

of the mean. Plots of the initial density and variance are

shown in Figures 2-19 and 2-20. The plot grid of 50

kilometers by 50 kilomelers is indicative of the spatial

region sampled by a 32 by 32 grid. The mean density and

the variance of the density are convected using the SCENARIO

equations presented in Section 2-2. The wind is assumed to
be horizontal and to the right with a 100 meter per second

speed.
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Figure 2-19. initial mean density for a barium
cloud simulation using the <N> E2
pair. The wind is horizontal and

toward the right at 100 meters per

second.
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The results of the first potential step calculation are

illustrated in Figure 2-21. Because of the free space

boundary conditions used in the solution the grid boundaries

do not affect the motion of the plasma. The newly developed

free space boundary condition algorithm avoids many of the

deficiencies associated.with previous potential solving

algorithms.

The split step algorithm has been used to advance the

density and variance values through time. Essentially a ten

second interval has been used for each complete time step.

The predicted values at 300 and 510 seconds using a calcula-

tion with a stationary frame of reference are shown in

Figures 2-22 thru 2-25. The figures show the physically

appealing result that the plasma structure region moves to

the trailing (right-most) edge of the barium cloud and

grows. This behavior is in good agreement with experimental

observation. The growth rate indicated also seems to be

realistic if one believes that barium cloud structures are

produced by gradient drift amplification of irregularities

in the ambient and barium Pedersen conductivity and that

these levels have initially a 1% r.m.s. to mean density

ratio. The time at which significant structure has been

first observed in barium radio propagation data is typically

10-20 minutes. The winds observed in these observations

produced an ion-neutral slip velocity of roughly the same

magnitude as that observed in the numerical simulation.

The numerical simulation data indicates a variance growth

rate of doubling every 100 seconds. At this rate the

structure variance becomes comparable to the square of the

mean density level at roughly 16 minutes which can be con-

sidered to be in good agreement with observations.
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Figure 2-23. Variance at 300 seconds.
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64

'-- _____n___nnnmlummlmmm lmim



-I

STROP56 14 MAN 42 ?In 310 ASYMPTOTIC CLOSUI, SYSTiM 6.21, of 10.00

S1I8N2 mix 0. MAN 1.00*E 00
CONTOUR .14zI-OI .1621[ 0 .2T1 1 o4 .3799[O0 .*1)7 00

300. ~-- .3961.00 . gqg[.0 .of*@O0 .92[*O00 .I031ox#

see.

300.

200.

o.

-tO0.

4
Q)

L).........

olo

Distance ( 1 100 meters)

Figure 2-25. Variance at 510 seconds.

6



-q-I

The above split-step calculation has also been performed

for a translating frame of reference. The reference frame

is assumed to move at one half of the wind velocity. Figures

2-26 thru 2-29 show the mean and variances predicted at 300

and 510 seconds. At 300 seconds the mean and variance are

similar to those predicted in the rest frame calculations

although there are small differences in the mean and the peak

variance is nearly 50% greater. By 510 seconds the mean is

developing a slightly different-appearance from the rest

frame calculation. The variance at 510 seconds is a factor

of 2 greater. In view of the exponential growth of structure

these differences are not very significant. The differences

do however illustrate that microstructure calculations are
more sensitive to numerical errors than classical calcula-

tions and emphasizes the importance of the numerical

considerations of Section 2-4. It should be noted however

that in spite of the marked differences in the variance

values, the variance growth rates are roughly the same as

those of the rest frame calculation and can also be

considered to be in agreement with observed data.

2-6 TWO-DIMENSIONAL AXIALLY SYMMETRIC BOMB EVOLUTION
WITH RADIAL HEAVE WINDS

The two-dimensional techniques presented in Section

2-2 can also be applied to the case of nuclear bomb plasma

evolving under the influence of axisymmetric radidily

directed heave winds. The effective driver of plasma
structure from high altitude nuclear detonations is the

Pedersen conductivity weighted heave wind (see Section 3-1).

For high latitude bursts this heave wind typically consists

of two dominant components. One component is a poleward
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directed constant wind. The microstructure aspects of evolu-

tion under this type of wind component is different only in

spatial scale from the barium cloud evolution illustrated in

Section 2-5. The other dominant heave wind component is an

axisymmetric radially directed wind. The investigation of

microstructure evolution under the influence of this type of

wind is presented in this section.

One interesting and useful facet of an axisymmetric

radial wind which will be capitalized upon in this section

is that if the bomb plasma statistics are also axisymmetric

then the mean electrostatic potential is zero. This fact is

a consequence of the property that the wind driven component

of the current is divergence-free and consequently no electric

fields are established. Solutions of the potential equation

become unnecessary for following the evolution of the plasma.

Under the condition of axisymmetry in the wind and the

plasma statistics the two-dimensional evolution problem may

be reduced to a one-dimensional problem. The equations for

the one-dimensional spatial evolution of <N> and

through time which are produced using the SCENARIO approxima-

tion can be found from the results of Section 2-2 to be:

-= - V <N> F V (2.27)

2 22( E F <N>2  V (2.28)~t . FC.

- F V <N>
2

c

where FC= 1 - l/(<N><1/N>)
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where the divergence and gradient operations are defined

for the radial coordinate r through

V - A - (r Ar ) (2.29)

r ar r

V q M (2.30)3q=r

Equations (2.27) and (2.28) together with the asymptotic

closure approximation, i.e.,

Fc = E2/(<N> 2 + E2) (2.31)

can be numerically time-stepped to simulate plasma and

plasma structure evolution.

The evolution of plasma and plasma structure has been

simulated using a generic wind model and representative
wind conditions as illustrated in Figure 2-30. The initial

plasma density is a constant background value of 1 plus a

Gaussian of magnitude 4 which has a 100 kilometer e-fold

radius. The standard deviation of the plasma structure

has been set to be 3% of the initial mean density. The

radial wind has a peak value of 1 km/sec at the 100 kilometer

radius value with a linear inner dependence (from zero value)

and a 1/r outer dependence. This wind profile is assumed

to be constant throughout the simulation. The spatial

sampling rate used in the simulation is 2 samples per

kilometer.

The initial conditions have been advanced 15 minutes

in time (900 seconds) using a .1 second time step. Figures

2-31 through 2-34 show plots of the mean and r.m.s. density

at 2 1/2 minute intervals. Sturcture growth is seen to

begin immediately. By 300 seconds the structure has become

intense enough to significantly influence the motion of the
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mean plasma density. Very steep gradients in both density

and structure occur by 600 seconds. By 900 seconds three

of these steep gradient fronts have become established.

At 900 seconds the mean density has formed a ring

around the interior peak. The exterior of the ring is at a

radius of 230 kilometers. While this exterior radius

indicates significant dispersal of the bomb plasma note that

the dispersal is significantly less than Kilb's (Stoeckly

and Kilb, 1981) free moving stick analysis would prescribe

(= 400 kilometers).

At 900 seconds the plasma structure is intense both

at the exterior of the mean density ring and at the exterior

of the center peak intensity. The motion of the mean

density with the enhancement of plasma structure at the

exterior of the ring is physically suggestive of structure

and density being carried by high density finger-like regions

extending through the ring. The structure in the interior

region of the plasma is suggestive of the complementary low

density fingers extending into the interior plasma region.

The results of this microstructure evolution using

the SCENARIO approximation is physically appealing. In

contrast note that if classical conductivity and correlation

assumptions were used then the plasma density and structure

would not change from their initial values. The structure

and density would be frozen to their initial location and

no striation dispersal would be predicted.

Of numerical interest in this calculation are the

fronts of steep gradients in mean density and structure.

Special care must be taken in treating these gradients

numerically to avoid Gibbs phenomena. Similar gradients

would be expected if the problem is performed in two

dimensions and similar Gibbs phenomena may result if care
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is not taken. These fronts, thus, reinforce the points

alluded to in Section 2-4 that the SCENARIO algorithms are

somewhat more sensitive than classical algorithms and that

care must be taken to reduce sources of numerical noise.
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SECTION 3

MICROSTRUCTURE MODELLING OF TRANSVERSE TRANSPORT FOR
SCENARIO

The development of microstructure transport techniques

has been directed toward the implementation of transverse

transport algorithms in the SCENARIO code. The SCENARIO

code, in most aspects, is an engineering version of the

MRC MELT code. The use of microstructure techniques is

one aspect in which SCENARIO attempts to go beyond MELT.

Its use is motived by the need to establish local structure

intensities--quantities not directly given by MELT--for

propagation effect calculation.

Like MELT, SCENARIO invokes the equi-potential approxi-

mation to reduce the three dimensional transport process to

two simpler processes, namely, parallel-to-B transport and

transport transverse to B. The parallel transport problem

is basically one of calculating the compressible flow of the

plasma in the direction of the geomagnetic field and is

treated one-dimensionally with no interactions in the

transverse direction. The algorithms for parallel transport

in SCENARIO are basically approximations of and simplifica-

tions to MELT algorithms.

The problem of transverse transport in a three-

dimensional geometry is closely related to the two-

dimensional transport problem addressed in the previous

section. In this section the microstructure techniques

formulated in the previous section are extended to the three-

dimensional transverse transport problem. First, the general

theory is discussed in Section 3-1 and then in Section 3-2

the results of one set of algorithms which have been
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implemented for SCENARIO are presented. Algorithms for alter-

native assumptions about the three-dimensional statistical

characteristics are presented in Section 3-3.

3-1 EXTENSION OF MICROSTRUCTURE THEORY TO THREE
DIMENSIONAL TRANSVERSE TRANSPORT

Classical algorithms for three-dimensional transverse

transport numerically model the process in a two-step fashion

similar to that discussed in Section 2. In one step, the

convection step, the continuity equation is used with a

known two-dimensional flow field to produce updated three-

dimensional density values. In the second step, the

potential solving step, an updated two-dimensional flow

field is calculated from the updated three-dimensional

density values. Microstructure influences the results of

both steps--a fact which is ignored in classical techniques.

In this section the general aspects of the extension of

microstructure modelling techniques to this transport

problem are discussed.

The microstructure three dimensional transverse

transport split-step algorithm is outlined in Figure 3-1.

It is basically an extension of the two-dimensional micro-

structure split-step algorithm seen in Figure 2-2 and has

four basic steps. First the potential equation determines

the transverse flow field from specified spatial dependences

of the effective conductivity. Next, the flow fields are
used to advance in time the btatistics of the plasma

density on each transverse layer. The statistics of

the density are then field line integrated to determine

the statistics of the field line integrated Pedersen

conductivity. Finally, the spatial dependence of the

effective conductivity is determined from the statistics of
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the field line integrated Pedersen conductivity. If the

plasma is not convected to regions of different neutral

density and if the transverse wind on each layer is the

same then the field line integrated Pedersen statistics

are conserved and can be convected using the two-

dimensional microstructure technique. As noted by the

dotted line path in the figure, the two-dimensional

calculation may in some instances serve as an alternative

path for determining these field line integrated

quantities and thereby allow consistency checks for

the convection algorithm (Stagat, et al. 1982).

The central features of the three-dimensional

microstructure approach are basically the same as those

used to develop the two-dimensional microstructure

algorithms of Section 2. For solving the potential

step fluctuations in the cross-field conductivity

are assumed to influence the mean conductivity through

* some specified relation, typically, the asymptotic

closure relation. For solving the convection step the

mean flux is calculated from the mean cross-field currents.

As in the two-dimensional case, the cross-field currents

are assumed to be uncorrelated with density related
quantities. These features of the approach are basically

the same as those described in Section 2. The primary

issues involved in extending the theory to three

dimensions focus on how to reduce the given three

dimensional structure quantities to two-dimensional

inputs to the potential equation and how to construct

three-dimensional fluxes from its two-dimensional

solutions. Currently these issues are resolved
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through the use of fairly broad based assumptions based

upon physical intuition.
With the parallels between the three-dimensional

transverse transport problem and the two-dimensional

evolution problem now established it is appropriate to
review the derivation of the three-dimensional relations

and to focus on the two issues of field integrated statistics

and of relating the local flux to the plasma potential.

As noted above the issue of determining field line

integrated statistics from local statistics arises in

connection with the solution of the potential equation.

The potential equation arises from the condition that

the total transverse current at any field line be

divergenceless to assure that charge will not accumulate.

The field line integrated transverse current, J, is

given by

=fj dz (3.1)

where j is the local transverse current and where the
magnetic field is assumed to be z-directed. Note that

lower case quantities will be used throughout Section 3

to denote three-dimensional counterparts to upper case
2-dimensional quantities (with the exception of '$ which

denotes a 2-dimensional quantity even though it is properly

lower case). Also note that a constant magnitude z-

directed magnetic field is assumed in order to simplify

the discussion. The actual SCENARIO algorithms have
been developed for a dipole coordinate system and include
complicating coordinate scale factors.
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From Section 2.1 the local transverse current
can be expressed as (eq. 2.1).

2n(E + v x i (3.2)

where n is the local plasma density, v is the local

wind velocity, E is the electric field, v is the

ionic mobility in the neutrals and B is the magnitude

of the magnetic field. Thb assumption that the field

lines are equipotential implies that the electric field

is a two-dimensional quantity. Performing the field

line integration of this expression for the local

current produces the following relation for J

J = N(E/B + V x iz) (3.3)

where N and V are the field line integrated Pedersen

conductivity and field line integrated neutral wind

respectively defined by

en
N= f dz (3.4)

ijiB

V f env dz/N (3.5)

The issue of determining the field line integrated

statistics from the local statistics arises directly from

these two integrals. Because of their importance some

comments about them are appropriate. The values of N

and V result from weighted field line integrals of the

local plasma density and the wind velocity. For N the
weighting function of most significance is the neutral

density which enters strongly in the ionic mobility term.

The neutral density weighting function varies rapidly

with altitude. In the 300 kilometer altitude regime it
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changes by a factor of ten every 100 kilometers. For

V, as with N, the neutral density is also a signifi-

cant weighting function but, unlike with N, the

integral for V includes the local plasma density n

as a weighting term. The field line averaged neutral

wind, V thus will be correlated with the local density

statistics.

The potential equation used in classical

algorithms results from the assumptions that the

electric field is irrotational and that the current J

is divergenceless:

V * J = V * (N(E/B + V x i))z
(3.6)

= V • (N(VO + V x iz)) = 0

This relation is the same as the two-dimensional relation

presented in Section 2 except that here N and V

denote field line integrated quantities.

The potential equation used for microstructure
theory is similar. It is derived from the assumption

that the electric field is irrotational and that the

mean current, <J>, is divergenceless yielding:

V J = V. <N(E/B + V x iZ>
(3.7)

-V"<N(VO/B + V x iz)> = 0

As in the two dimensional case approximations to the
mean conductivity relation are needed to reduce the

stochastic potential equation to a numerical equation.
The requirement thus arises to define a relation for

<J> in terms of the statistics of N, V , and V and

to then determine these statistics from the local
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statistics of the plasma density n. Determining the
statistics of field line integrated quantities from the
statistics of the local plasma density requires knowledge

about the correlation properties of the plasma density
along field lines.

The range of possible formulations can be

exemplified by considering the possible expressions for
the variance of N, denoted by E2 in terms of the
variance of the local plasma density n denoted by a2.

For the case of uncorrelated structure between adjacent

grid cells in the z-direction, the relation for the
variance of the integrated Pedersen conductivity N is

£2 ''eo2
E J(2) dz (3.8)

where the integration is understood to represent a summation
over the grid cells in the z-direction. For the case of
structure which is correlated or anti-correlated from cell
to cell with correlation coefficient of 1 the relation would lie

edz S dz (3.9)

2

where 1 1 is the-region of the fluctuations positively
correlated with the field line integrated content and

. where 12 is the region of negatively correlated
fluctuations. Note that if the value of a in the 12

region is assigned a negative value, the above relation
can be expressed more compactly as

B e e dz  (3.10)
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Giving a positive or negative polarity to the value of a

has been found to be useful in developing the completely

correlated algorithm discussed in Section 3.2. Since

only a2 is required for propagation effects analysis,

assuming negative values of a does not alter any of

the systems effects outputs. Different types of field

line correlation models can thus lead to significantly

different dependencies of the variance of N on the

local plasma variance and correspondingly different

algorithms as a result.

Assuming the issue of relating local quantities

to field line integrated quantities has been resolved,

solutions to the potential equation can be obtained

numerically producing values of the mean potential,
<V>, and thereby precipitating the second issue. Given

the mean potential, what is the flux field of the local

plasma structure.

The mean flux of the local mean density and the

mean flux of the mean square density are formally given

by -n U> and <n2 U> respectively where U is the

plasma velocity defined by V x i The current issue

is basically how to express these quantities in terms of

the known statistics of n and the result of the

potential step <v> or equivalently <U>. A first
step in obtaining these relations may be taken as in

Section 2 by investigating the expressions between the

plasma velocity and the current:
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Jx i
N (3.11)

nJx iz

<n U> = < N > + <n V> (3.12)

2 a J_ X"__2
<n U> = < N > + <n V>N (3.13)

By invoking the assumption that the plasma density

related quantities 1/N, n/N, and n 2/N are uncorrelated

with J, evaluating <J> in terms of <U>, and then

substituting; the following mean flux relations are

obtained.

n2 <U> - <V><n U> = <N> <1 + < n V>

4 2

N n <n2><U><V> + <n 2 V>
N <

The basic problem which remains is how to evaluate the

quantities

4> <> <V>, <nV>, and <n2 V>

in terms of <n>, a , <N>, Z, and v. These
quantities can be evaluated explicitly only if something

is known about how the local quantity n is jointly
4 distributed with the field line integrated quantity N.

Once again the extension to the three-dimensional

problem is focussed on its field line correlation

aspects.

These quantities have been evaluated for the

completely correlated situation as discussed in Section
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3-2. For the uncorrelated situation, techniques for

their evaluation are suggested in Section 3-3. The

expressions arrived at are somewhat more complex than

would initially be guessed. Neither does <1> equal
<n>N
7- for the completely correlated case nor does

< = <n> <r> for the uncorrelated case. In bothN N
cases further assumptions about the fluctuation

statistics are required. These assumptions and the

resulting expressions are discussed more fully in the

next two sections.

3-2 THREE-DIMENSIONAL TRANSPORT FOR COMPLETELY

CORRELATED STRUCTURE

In order to reduce the three-dimensional transverse

transport problem into a two-dimensional problem suitable

for application of the techniques advanced in Section 2

it is necessary to know how the structure is correlated in

the direction parallel to the geomagnetic field. In all

current approaches to this problem the structure correlation

properties are provided through assumption only. This

section considers the case in which the structure is assumed

to be coherently correlated along the geomagnetic field

direction. Algorithms for use in SCENARIO are developed

and selected results from a SCENARIO implementation are

shown.

The coherent fluctuation approximation is explicitly

that there exists a stochastic form function E(x,y) with

zero mean and unit variance that describes the fluctuations

of the integrated Pedersen conductivity through:
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N = <N> + e(x,y) E (3.16)

as well as the fluctuations of the local density through the

similar relations

n = <n> + £(x,y) a (3.17)

Note that while the r.m.s. value of the integrated Pedersen

conductivity E is defined in its usual positive sense,

the r.m.s. values of the local density fluctuations are

allowed to be either positive or negative. A negative

value of a denotes that fact that the local fluctuations

n are coherently anti-correlated with the total electron

content.

Coherent structure growth is produced when a

structured two dimensional velocity field is imposed upon

gradients of local density that may or may not be structured.

This structure growth is correlated with a normalized

correlation coefficient of plus or minus one according to
the sign of an effective mixing velocity component in the

direction of the local gradient, as will be detailed later

in this section. The important point to note now is that

this mechanism for the coherent growth of structure motivates

the use of the sign of a as well as its magnitude. Further,

the important additional information carried by the sign

of sigma imposes no added storage requirements to the

algorithms. Its use can be construed as a more efficient

use of available computational assets.

The basic quantities in the algorithm are <n> and

a. The two dimensional values used for input to the

potential equation, <N> and Z, are essentially the

neutral density weighted sums of <n> and a as

discussed in the previous section. Explicity
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<N> n <n> (3.18)

noa (3.19)
N 0

0

where N is the neutral density normalization quantity

defined by:

No 0 no  (3.20)

where the altitude variations of the magnetic field strength

with position along the geomagnetic field have been dropped

for simplicity of presentation, and where the sums are

assumed to be along the geomagnetic field.

From Section 3-1, equation (3.6), the field line

integrated transverse current J can be written as

J = N E/B + N V xi (3.21)

giving

<J> = <N E/B> + <N V> x i (3.22)

While this expression is useful for determining the mean

flux, essentially <N E/B>; for solving the potential

equation an expression for the mean current <J> in terms

of the mean electric field and mean wind is needed. One

method to obtain this needed expression is to divide the

equation for J by N, to take the expectation and to

then invoke the SCENARIO approximation that J is urcorrelated

with 1/N giving:

<J><-/N5 = <E/B> + <V> x iz  (3.23)

By invoking the asymptotic closure approximation to the

effective conductivity, <1/N>-l the expression for the

mean current becomes:
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3
<J> 2 N <E> + <V> x i 3.24)

Z 2T 7 B + <N> T(BZ

The potential equation which is solved numerically results

from setting the divergence of this equation to zero. Note
2that <N> and E are known from their field line inte-

grations and that <E/B> is to be solved for. The neutral

wind term <V> can also be expressed in terms of the local

wind v and the local structure quantities through the

form factor assumption as now discussed.

The expression for the field line integrated neutral

wind V from Section 3-1 is:
fnonV dz

v= N d (3.25)

0

Note that V is a weighted integral of the neutral wind

where the weighting functions are the 1-,zal neutral density

no  and the local plasma density n. With the form factor

assumption V can be written as

fno <n> v dz + ef n0  v dz (3.26)

N (<N> + Z)

or for simplicity

F + C F
V=n a (3.27)
<N> + £ (

where Fn and Fa are weighted fluxes of plasma density and

structure which have been defined through

Fn = f n <n> v dz/N0  (3.28)

Fa =f no  a v dz/N °  (3.29)
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The above expression for the stochastic variation of V
includes the e form factor in both the numerator and the
denominator. To find <V> long division is used to

isolate e into either the numerator or the denominator.

This technique is also used frequently in the evaluation

of many flux related quantities as discussed later. For
evaluating the mean of V the long division technique

produces

F F - F <N>/Ea n a
V + <N> + e Z (3.30)

Once the form factor is isolated to the denominator as

FF
above an expectation produces <1/N>, thus

F 11< a < > F n  <><N> Fa / (3.31)

is the expression which results and which can be used

directly in the potential equation.

2 For solving the convection equations for <n> and

a 2 the mean fluxes defined by <n U> and <n2 U> are
required. As discussed in Section 3-1 these fluxes are

derived through relations for the current with the assumption

that both n/N and n2 /N are uncorrelated with J giving

relations for the mean fluxes. Specifically for <n U> the

expression obtained is

<n U> =<B> <J5 x i + <n V>
N z (3.32)

N > <U> - <V> + <n V>
N <

where <J> <1/N> - <E/B> + <V> x i and <V> - <E/B> x izz
have been used to substitute for <J>. The quantity
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<n/N> is found from the form factor assumption and the

factorization provided by one long division:

<R <n> + ea<N> = <N> + C

n> <N+- Z>i 1

= (<n> - R a) <1/N> (3.33)

where R is defined by

<N> 1 <N>
R = -z - / = --- F (3.34)E <1/N> c

where F = 1-
c <1/N> <N>

The quantity <n V> can be found similarly to be

(<cr F<N>

<n V> = <> n> Fn (aFn + FF <N> (3.35)

When these quantities are substituted into the expression )
for <n U> considerable cancelling occurs giving the

following result

<n U> = <n> <U> + a W (3.36)

where W is the velocity vector defined by:

W = R(F /Z - <U>) (3.37)

This result is physically appealing in that it says the

flux of the local plasma is determined by the classical

term <n> <U> plus a correction dependent upon the amount
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of local structure. The presence of structure locally
can cause convection in the direction of the mixing velocity
W. The term Fa/E can be recognized to be a weighted
field-line integral of the neutral wind when the weighting
function is the local structure amplitude. Thus W can

be considered to be R times an effective structured
wind force slip velocity. Note that with the asymptotic
closure approximation R also takes on a simple form,

namely,
E<N>

R =<>2 + 2 (3.38)

which ranges from zero to a maximum value of 1/2.
In order to derive an equation for the convection of

a the mean flux of n2 is needed. This quantity, <n2 U>,

can be found in a fashion similar to the above with the
relation

22<n2U> <na-- J x i > + <n 2 V>
N Z (3.39)

<n> <U> -<V> 2
N N-+ <n V>

In addition to <V> which was evaluated above, expressions

for <n 2/IN> and <n2 V> are required and can be found
using the long division technique. The algebra is con-
siderably more complicated but as with <n U> considerable
cancellation occurs in the derivation to produce

a 2 F<n2 U>= <n>2 <U> +2 anW - a2  W + a (3.40)

The convection equation for the standard deviation of
the local density can be expressed in terms of the mean flux
of the density and density squared by the following
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2 - 3<n 2 > 3<n>2 - at at (3.41)

or
-L = - -- <n U> - 1V-<n2 U> (3.42)

at a

Substituting the above relations for <n U> and <n2 U>

and performing further cancellation of terms yields a

relation which is physically appealing, namely

2 = - V • (a2Q) - W • Vn (3.43)

where Q is a velocity given by

Fa N
Q = - W (3.44)

If the local density gradients are zero this equation
reverts to a relation for the conservation of structure
variance moving with velocity Q, namely

a. --t (a2 Q) (3.45) )
Thus local structure moves in a conservative manner according

to the two-dimensional flow field given by Q, a sum of

effective structured wind flow field and the mean plasma

flow field with each of these velocity terms weighted by

structure related values. This flow is independent of the

sign of a and does not alter it.

If the local density gradients are not zero then
structure can grow according to the w • Vn term. This

term demonstrates the growth expected to be produced by a

structured flow field in a smooth density gradient. As
noted earlier in this section the growth term can be
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positive or negative according to the relationship between

the local density gradient direction and the velocity W.

Positive structure growth denotes structure growing in a

manner correlated with fluctuations in the total electron

content. Negative growth denotes growth toward anti-

correlated structure. Note that the growth term can

exist even if the local structure a = 0; however, in

order to assure a non-zero value of W structure must
exist somewhere along the field line, E 0, in order for

structure to grow. As with the two dimensional case an

initially smooth, a = 0 everywhere, plasma will produce

no structure. All of these features which are evident in

the convection equations very nicely characterize the
features of gradient drift structure growth and are

intuitively appealing from a physical standpoint.

The potential and convection algorithms have been coded
into SCENARIO and results from a single burst Cheyenne Mt.

run are available. Figures 3-2 and 3-3 summarize the Cartesian
form of these relations for easy reference. Shown in Figures

3-4 and 3-5 are the mean plasma density and the standard devia-
tion of the microstructure used to initialize the SCENARIO

plasma grid. The mean plasma density is determined by the MHD
initializer module. The standard deviation has been simply
chosen to be 25% of the mean density. Figure 3-6 shows a con-

stant altitude view of the mean density near the bottom of the
bomb density enhancement. Of specific interest in this plot

is the depletion of mean density near the center and an almost

ring-like distribution of the peak value of mean density. On
the interior of the ring are density gradients which would be

stable to the heave winds in a two-dimensional problem; however,

in the subsequent evolution of this 3-d problem the gradients

are the source of important structure growth that is anti-

correlated with the total electron content fluctuations.
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• Given n, a, v (three-dimensional quantities) algorithm

advances n, a through time.

* Define

- Field line integrated density

N= f d.

- Field line integrated structure

E= fed.

Field line integrated mean wind flux vector

F. fenv d

Field line integrated structured wind flux vector

Fa Jenadz

- Structure Strength Parameter

ENR 2 2
E + N

- Mixing Velocity Vector

W - R(F /Z - U)
a

where U is result of potential calculation.

Figure 3-2. Transverse transport algorithm for completely
correlated structure--definitions in terms of
elemental parameters.
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* Convection of Mean

an -V -(n U + OW)
at classical structures

term correction

0 Convection of Structure

ac -(a Q) - N Vn

structure' - ~ tutr
convection growth!
with velocity
Q

N

* Potential Eq. (two dimensional)

V * J=0

j _7 3 -- 7 (-U i) + (F -RF) i
N +EZ n Z

Figure 3-3. Transverse transport algorithm for
completely correlated structure--equations.
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Figure 3-4. Initial density for SCENARIO plasma
grid calculation for Cheyenne Mt.
calculation.
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Figure 3-5. Initial standard deviation of plasma
density. The initial value is
arbitrarily-*set at 25% of the mean
density with all fluctuations assumed
to be coherently correlated with the
total electron content fluctuations.
Crosses denote grid cell centers.
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Figures 3-7 and 3-8 show the mean plasma density and
the standard deviation of the microstructure at 450 seconds
after 250 seconds of further plasma evolution. During this

interval the peak density has decreased below 108 electrons
per cc as a result of the rapid expansion of plasma along
field lines. Note that a comparison with the MRC MELT

Cheyenne Mountain calculations indicates that in this version

of SCENARIO the parallel transport algorithm probably over-

estimates this expansion.
The transverse transport during this interval on the

constant altitude layer shown in Figure 3-4 is illustrated

in Figures 3-9 and 3-10. The transverse motion has been

governed by a field line averaged neutral wind with a 1-2
kilometer per second northward velocity (as referred to the

earth's surface). In response to the wind the structure has

moved across the gradients on the north side of the density
ring. The initial value of a of +.25 times the mean

decreased through zero to a negative value indicating anti-

correlated structure growth. At this time its magnitude
begins to approach the mean density.

Figures 3-11 thru 3-14 show the mean plasma density
and standard deviation for the results corresponding to

Figures 3-7 thru 3-10 obtained at 900 seconds. Continued
parallel dynamics are diacernible in Figures 3-11 and 3-12.

Of interest is the enhanced transverse transport visible in
the constant altitude plots of Figures 3-13 and 3-14.
Structure has grown to a level of order five times the mean

density and has moved toward the north. The mean plasma
density has moved with it. The enhanced northward mean

density transport is even visible at lower altitudes in

the plot of Figure 3-11.

It is evident from the above results that three-
dimensional transverse transport algorithms that produce
physically appealing results and that have a sturdy
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indicate anti-correlated structure growth.
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microstructure theory foundation can be developed for

SCENARIO. In this section a set of transport algorithms
have been developed under the assumption that structure

along field lines is coherently correlated oi coherently
anti-correlated. Because they allow the structure to be

coherently anti-correlated as well as coherently correlated,

the algorithms developed herein represent a significant

advancement over previously described three-dimensional
transverse transport for correlated structure (Stagat,
1982). When the structure is not allowed to grow in an
anti-correlated fashion unreliable results are obtained
especially in situations where anticorrelated structure

growth would have occurred. The numerical results for a

Cheyenne Mountain burst SCENARIO run with these algorithms
have been seen to produce physically appealing results.

3-3 THREE-DIMENSIONAL TRANSPORT ALGORITHMS FOR UNCORRELATED
STRUCTURE

Nuclear structure is believed to be field aligned
over distances that are large with respect to their cross-
field dimensions. It may be the case, however, that over

the very large SCENARIO grid lengths in the direction of

the geomagnetic field the fine scale structure may signifi-

cantly decorrelate. At least two physical processes could
cause structure to lose field line coherence, namely,
finite parallel conductivity and image growth. Thus while

the investigation of uncorrelated microstructure transport

algorithms is not only motivated from the standpoint of

evaluating both extremes of field line coherence; it is

also motivated from a physical standpoint.
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This section develops the theory for an algorithm

for three-dimensional microstructure transport which could
be implemented into SCENARIO. The basic quantities for

the algorithm are the local mean density <n> and the local
2microstructure variance a

Two approaches are available for calculating the

structure related conductivity modifications necessary for

solution of the two dimensional potential problem. One
approach is to calculate the variance of the integrated

Pedersen conductivity, Z2 and to use this value with the

asymptotic closure approximation discussed in Section 2-4

to estimate <1/N>. To calculate Z an approximation

which is appropriate for the incoherently aligned structure

is

E2  (no) /N2 (3.46)

where N2 is a neutral density normalization quantity with

N2 -)n (3.47)

and where no  is the local neutral density. Once Z2 is

determined the asymptotic closure approximation gives <1/N>

as (E2 + <N.>2 )/<N>3 . The potential equation can then be

solved to find <U>.

As discussed in Sections 3-1 and 3-2 <U> can be
used to find the mean flux of the density and density squared

if the five quantities <n/N>, <n2/N>, <V>, <n V> and
<2 V> are known:

<n > <n <U> -<V>
N U>= W + <n V> (.48)

2 n2  <U> -<V> 2

<n2 U> - < > - <> + <n 2  > (3.49)N <1/ >
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In order to evaluate the five quantities it is necessary

to make assumptions about the joint statistics of n and
N. In Section 3-2 the form function approximation allowed

evaluation of these quantities for coherently aligned
structure. For incoherently aligned structure the key
assumption is that the two stochastic quantities n and
N - n are mutually independent. For this approximation

2evaluation of <n/N> and <n /N> reduces to the evalua-

tion of

<n> and
n+ y

where y is defined to be N - n. Evaluating the expressions

in this format accounts for the fact that even though the
structure in any layer is uncorrelated with all other layers

it is still partially correlated with the field line integrated
Pedersen conductivity. Note that <n/N> is not being assumed

to be <n> <1/N>.
The next step in the evaluation is to make assumptions

regarding the statistics of the local density. Of the
possible candidates of Gaussian, log normal, two-level and

others, the two-level distribution is numerically attractive

and reproduces many of the physical characteristics believed
to be present. The main problem with the two level approxi-
mation is that for any given pair of structure and mean

variance, the chosen levels must both be positive to assure
physically realistic quantities. This condition cannot be
met with an equally weighted two-level distribution and
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consequently the probability density at the two levels must

be variably weighted according to an assumed function of

the mean and variance. Note that this condition also rules

out straightforward use of Gaussian probability densities.

While the choice of the two-level density weighting function

is somewhat arbitrary, it is felt that the choice which
makes the local probability densities satisfy the asymptotic

closure relation is an appropriate choice.

Thus it is assumed that on each layer n is

distributed according to
1 - C; if n = n

L

p(n) e if n = n. (3.50)

0 ; otherwise

where nL, ni, and e are functions of the mean value <n>

and variance a2  such that

a2 2a + <n>n <n>3 (3.51)

Explicitly these relations are

nL - <n> -i - 0 (.3.52)

n. = <n>'+ j- (3.53)

C - - (3.54)1 + 4<> 2
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Given these local density functions, evaluation of

the quantities <n/(n+y)> and <n2/(n+y)> at each layer

is straightforward. For example

<n/~y>= e ff(y) d!Y + EL nL ff (y) dY (3.55)
<n/n+y> - nHNf n. + y Ln L + y (5

where f(y) is the density of y. The density of y is

known if the local densities are assumed to be jointly

independent. Explicitly the quantity f(y) is a multiple

convolution of the two-level density function over all

the other layers and is thus comprised of 2L - 2 Dirac

delta functions of unequal weight where L is the number

of SCENARIO cells along the geomagnetic field. The term

<n/(n+y)> is thus explicitly the sum of 2 terms that

can be straightforwardly evaluated computationally. The

values of <n 2/(n+y)>, <V>, <n V> and <n2 V> can be

evaluated similarly.

Given <n/N>, <n2 N>, <V>, <n V>1 and <n2 V> the

mean flux of the density and the density squared can be

determined. In a manner similar to that used in Sections
2

2-4 and 3-2 the n and n continuity equations can be

manipulated into an equation for the convection of a2

The approach has as yet not been fully developed for
SCENARIO algorithms for various reasons. The most

important reason is that extensive computation time is
required for evaluating the terms like <n/(n+y)> over

the multi-layer multi-level density function. Future
extension of this approach most likely will need to

consider approximations to f(y) in these evaluations.

It is fair to conclude now, however, that a technique

for calculating three-dimensional transverse transport

of uncorrelated structure has been set upon a firm

theoretical footing.
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It is appropriate at this time to mention the other

approach available for the evaluation of the mean conduc-

tivity 1/<1/N>. The probability density function for N

can be found in a manner similar to that used for finding

f(y) in the above evaluation. That is, the probability

density of N could be expressed as the convolution of L

two-level local plasma density probability densities

yielding a function with as many as 2L unequally weighted

Dirac delta functions. Using this probability density

function an alternative evaluation for <1/N> for use

in the potential equation is possible. Using this approach

in an algorithm might also be considered more consistent

than using the asymptotic closure assumption approach. It

should be noted in the defense of the asymptotic closure

approximation to <1/N> in the potential equation that to

a large extent the consistency between it and the approxima-

tion to <n/N> in the convection equation is unimportant in

comparison with the other approximations involved. Clearly

though, if <1/N> is available in the self-consistent form

by using the multi-layer multi-level statistics, its use

would seem to be preferable. Both approximations should be

considered during any algorithm verification.
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SECTION 4

CONCLUSIONS

Numerical simulations of high altitude nuclear

explosions cannot be gridded fine enough to spatially

resolve the structure in the plasma density. Classical

techniques ignore the presence of structure that cannot

be resolved.

The importance of the location and intensity of

plasma structure for the evaluation of RF propagation

effects motivates the application of stochastic theory to

the HANE evolution problem. The transport of plasma and

plasma structure transverse to-the magnetic field is closely

related to the problem of the evolution of a two-dimensional

plasma. In Section 2 stochastic theory is applied to the

2-d problem and modifications to the classical 2-d split-

step evolution algorithm are developed which include micro-

structure effects. In Section 3 the 2-d algorithms are

extended to the HANE 3-d transverz, transport problem for

implementation in the SCENARIO code.

Numerical calculations presented in Section 2 demon-

strate that structured plasma has a lower effective con-

ductivity than unstructured plasma with the same mean density.

Thus, classical algorithms which ignore structure calculate

somewhat erroneous current patterns and plasma flow fields.

Microstructure algorithms attempt to correct this deficiency

by convecting plasma density structure statistics as well

as the mean plasma density and by using structure statistics

to estimate the local conductivity.

The difference between the classical convection

algorithms and the algorithms implemented for convection
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in SCENARIO can be understood on a stochastic basis as which

quantities are assumed uncorrelated. In the classical
algorithms fine scale density fluctuations are assumed to

be uncorrelated with the electric field fluctuations. In

the SCENARIO algorithms the inverse of the density fluctua-
tions are assumed to be uncorrelated with the fluctuations

in the current. The former tends to be the case when

structure gradients are parallel with the wind while the

latter applies both to the case where the gradients are
predominantly perpendicular to the wind and to the case of

isotropic structure.

A split-step algorithm which convects the mean plasma
density and the r.m.s. density fluctuation level is developed

in Section 2. This algorithm is applied to the problem of 2-d

evolution of a barium cloud. The results obtained can be con-

sidered to be in agreement with observed barium cloud structur-

ing times. The algorithm is also applied to the problem of

radial winds through an axisymmetric 2-d structured plasma.

In Section 2 the choice of which statistical parameter

should be used in convection algorithms is discussed. Algo-

rithms which use statistical parameters which are not independ-

ent of each other, e.g., mean density and mean square density,

can produce unphysical results and should be avoided.

The 2-d microstructure theory is extended to the 3-d
transverse problem in Section 3. A key consideration in

this extension is the correlation of the fluctuations in

the direction parallel to the field. The correlation

properties are currently specified by assumption. Two
orthogonal assumptions have been used to develop convection

algorithms. One is the assumption of completely coherent
structure along the magnetic field. The other is the assump-
tion of structure that is independent from grid cell to grid

cell in the magnetic field direction.
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The completely correlated algorithms have been

programmed for use in SCENARIO and some SCENARIO results

are presented. The results demonstrate the convection of

structure and the enhanced convection of the mean density

associated with the structure. The growth of coherently

anti-correlated structure is also demonstrated. The

algorithms presented represent a significant advance over

previously used algorithms because they allow for anti-

correlated structure growth.

Microstructure theory is a powerful tool which has

not as yet been fully exploited. It is perhaps appropriate

to point out areas where further application may prove useful.

Image growth of fine scale structure is currently not

modelled. Image growth is a consequence of the fact that

transverse currents are carried by ions and parallel currents

are carried by electrons. This fact leads to plasma enhance-

ments and depletions associated with structure convection.

The growth of these regions could be modelled based on

calculated values of the divergence of the local transverse

current. Note that image growth produces uncorrelated

structure.

A natural extension of the algorithms of Section 3

is the development of an algorithm for a field line correla-

tion function with a fixed dependence. It is believed

currently that a decomposition of the multi-layer density

fluctuations into a basis set of uncorrelated functions

through a Gram-Schmidt orthonormalization could be used to

extend the uncorrelated algorithms to this special case.

The convection algorithms would then be used to advance the !

statistics of the basis functions.

Given that algorithms for a fixed but arbitrary

correlation function along the field line can be developed
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a still more ambitious extension is suggested. By accounting
for the correlated nature of gradient drift growth and the

uncorrelated nature of image growth, the correlation prop-

erties along the field could be dynamically altered. This

sophisticated approach could then produce structure correla-

tion along the field as a function of time in contrast to

merely relying on assumption. While this type of calculation
might be of interest on a one-of-a-kind investigation of
field line correlation; because of its probable complexity,

it would most likely not be suited for use in engineering

codes such as SCENARIO. It is mentioned here primarily to
point out the advances possible through the application of

microstructure theory to the HANE simulation problem.
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